Indian Statistical Institute B. Math. Hons. III Year Semestral Examination 2008-2009

Topology

Duration: 3 Hours Marks: 50 Instructor: J. Biswas

Attempt all questions, each carries 10 marks.

- 1. State whether each of the following statements is true or false and give your reasons for the answer. You may quote any theorem which has been taught in class.
 - a) The fundamental group of \mathbb{R}^3 with nonnegative x, y and z axes deleted is abelian.
 - b) Every continuous map $f: S^1 \to P^2$ is nullhomotopic.
 - c) A covering map is a closed map.
- 2. Let $p: E \to B$ be a covering map such that $p^{-1}(b)$ is a finite set for all $b \in B$. Prove that B is compact, Hausdorff if and only if E is compact, Hausdorff.
- 3. a) Let $p: E \to B$ be a covering map where E is the figure eight. What can you say about B?
 - b) Let $X \subset \mathbb{R}^3$ be the union of S^2 and a diameter of S^2 . Construct a simply connected covering space of X.
- 4. Prove that S^n is a retract of the closed unit disc B^{n+1} , if and only if, S^n is contractible.
- 5. Let $X \subset \mathbb{R}^2$ be the union of the four sides of the square $[0,1] \times [0,1]$ together with the line segments $\{1/n\} \times [0,1]$ for all $n \in N$. Show that, for every covering space $E \to X$, there is some neighbourhood of the left edge $\{0\} \times [0,1]$ in X which lifts homeomorphically to E. Deduce that X has no simply connected covering space.